TEST METHODOLOGIES

Prevent Outages: Characterize the
Unexpected under Real-world Load.

An Integrated Test Solution from Mu Dynamics and Agilent
Technologies to mitigate protocol errors, day-zero attacks and
hidden vulnerabilities in network equipment, and ensure unin-
terrupted service delivery and maximum performance under
worst-case conditions.

James Maze, Director of Systems Engineering, Mu Dynamics
Peter Atanasovski, Product Manager, Agilent Technologies

. u =
) Mu Dynamics' 4.2 Agilent Technologies
686 W. Maude Avenue, Suite #104 . 5301 Stevens Creek Boulevard
Sunnyvale, CA 94085 Santa Clara, CA 95051
866-276-4640 toll-free 408-553-7777 international

408-329-6330 international
408-329-6317 fax

Table of Contents

EXECULIVE SUMMAIY ..ooueiiieiie ettt e e e nne e 3
SOIULION OVEIVIEW ...ttt sttt sr b 3
Test Bed Configuration ... 6
Test Integration Example —
Core router PIM analysis and data throughput........cccccoeeviivicnennee 8
Agilent N2X INtEGrationuooi i 9
ANAIYSIS OVEIVIEW ...vveeiieeiiiiiiiiiee e e et e e e sreee e e 9
TESEBEA ..t 10
TAIGEL .o 14
ATEBCK ...t 14
1Y (o] 01 (o] £ O PR UP PP PR PPROP 16
RUNNING the TSt ... 19
Appendix A —Mu Analysis Template........cccooevieevieenieeriee e 21
Appendix B — Tcl script procedures for Agilent N2X........cccocovvvieienne 24

Appendix C — Mu-4000 Features and Benefits........cccoceviieniiniienieniene 38

Executive Summary

As Network Operators look to migrate much of their infrastructure to real time IP services
like VoIP, IPTV, and IMS, the reliability and security of the network has become
increasingly important. The systems supporting these services are highly interconnected,
and many are built on increasingly open, standardized communication protocols and
software. Unfortunately, with increased complexity comes increased risk, and thus
Network Operators must bear the responsibility of ensuring these networked applications
and systems are going to be reliable, available and secure in a production environment.
Without a comprehensive Service Assurance strategy in place, enabled by appropriate
tools and test methodologies, a high-profile service outage is all but guaranteed.

This paper will explore how an integrated approach to Service Assurance testing offers
unigue and powerful benefits to customers. By combining the benefits of traditional load
and performance testing tools from Agilent Technologies, and Mu'’s innovative Service
Analyzer, customers can finally make critical product purchasing and deployment
decisions based on real-world reliability, availability, security, performance, and Quality of
Experience metrics. Services can be deployed with confidence and assurance that they
will remain robust and available, despite the constant threat of exposure from attacks and
other anomalous traffic conditions.

Solution Overview

Agilent Technologies and Mu Dynamics address vastly different problem spaces within
network testing. At the most basic level the Agilent N2X characterizes how a system
under test (SUT) behaves and performs when it receives expected input at scale; the Mu
Service Analyzer helps characterize what happens when the unexpected occurs. This
paper will explore how the two systems can be used together in a complementary
fashion.

There are a variety of test tool solutions available from Agilent Technologies. This paper
will focus on how to incorporate the Mu-4000 service analyzer with the Agilent N2X
Multiservice Test Solution, the N2X Tcl API and N2X Tcl libraries that are widely used to
automate testing. The Agilent N2X Tcl API can be used to completely automate every
aspect of operation of the N2X test solution.

The Agilent N2X provides a platform for validating the performance and scalability
characteristics of next-generation network equipment. N2X is designed to test IP
forwarding devices that deliver video, VolP, data services and business VPNSs. It is used
in “out-of-service” lab environments to test at real-world scale with realistic traffic.

Agilent N2X emulates real network devices by statefully initiating and responding to
protocol messages, allowing you to replace large testbeds of network equipment. It will
characterize failure recovery times; quantify protocol performance at scale and simulate
control plane flapping.

Agilent N2X will also verify that a device or network can correctly prioritize and forward
millions of flows from multiple subscriber services, uphold QoS service level agreements
and quantify the ultimate limits under extreme loads. It can generate millions of unicast
and multicast streams; measure per-service, per-subscriber or per-VLAN performance;

validate mixed and proprietary encapsulations; test new protocols and report packet loss,
latency, throughput and other performance parameters.

Integrated Traffic and Protocol Emulation using Agilent N2X:

‘ Srmarant mant -&. 5 '.'I’.\! B

u
Dynamic’s test equipment, in contrast, is focused on evaluating the “exception” handling
capabilities of the protocol implementations of the device/system under test, and
characterizing overall device robustness and security. A Mu analyzer sends a series of
malformed, or mutated packets to the DUT (Device Under Test) using an automated
process that is generally referred to as “Protocol Fuzzing”. The Mu sends a very large
number of protocol-specific test cases in a very structured and repeatable pattern. Each
mutated sequence contains a single malformed packet in which a single field or value
has been altered from the standard. A typical Mu analysis may consist of anywhere
between tens of thousands and over a million “mutated” packet sequences.

The Mu determines which mutations impact the services supported by the DUT through
an automated fault isolation process. A test begins by sending one or more valid
sequences to the DUT to verify that it is operating normally, a process referred to as
instrumentation. Normally, the protocol being tested is instrumented, but this may be
augmented (or even replaced) by any other supported protocol if desired. If the Mu is
able to communicate with the DUT using all of the “instrumentation” protocols it will then
send up to 16 related (the same message and field are altered using variations of a
single mutation type) mutated sequences. Following these mutations another set of valid
instrumentation messages are sent. If the DUT responds as expected the process
continues and the next set of mutations are sent. If the DUT fails to respond to
instrumentation the Mu will periodically resend the instrumentation messages to
determine when the DUT is responsive again (optionally, the Mu may take proactive
steps to bring the DUT back on line). Once valid communication is re-established the Mu
will resend each of the individual mutated sequences contained in the previous set
surrounded by valid instrumentation packets. This is done to reproduce and validate the
issue and, if possible, isolate the responsible sequence down to a single mutated packet.

The fault isolation procedure described above will identify any anomalous behavior in the
control plane protocols being used for instrumentation. While this is extremely useful, we
may also wish to characterize effects outside of the operation of the control plane. This is
best illustrated through examples.

When testing a router the isolation procedure described above will tell us if the routing
protocol, OSPF for instance, stops responding for some period of time. The Mu’s system-
level monitors can also detect system-level crashes and can help isolate the root cause
of the failure. However, this is a limited perspective into how the router is actually
functioning. Does it continue to forward packets using the latest routing table or does it
immediately shut down. The answer to that question has a significant effect on the
impact of the discovered vulnerability. Although it seems less likely, one can also
imagine a situation in which the protocols continue to communicate but packet forwarding
ceases or is significantly degraded.

Similarly, when testing a SIP call processing device such as a soft switch or session
border controller (SBC) we are certainly interested in the operation of the SIP protocol as
this determines our ability to make new calls. However, it would also be useful to know if
the mutation had any effect on existing calls. For example, imagine we are testing a low-
end soft switch capable of maintaining 500 simultaneous calls and of accepting new calls
at a rate of 5 calls per second. Using only the instrumentation method of fault isolation
we find that a particular mutation of the Invite message causes the SIP protocol to
become unresponsive for 500 milliseconds. This might be evaluated to be a significant,
but not critical vulnerability since at the call rates supported it would only effect 2-3
callers. However, if in addition to SIP being unresponsive the vulnerability also causes all
existing calls to drop, this would make the problem far more severe. The event would be
much more apparent to the customer and might lead to a significant increase in call
volume that the device would be unable to accommodate.

The previous two examples consider the functionality of the device being tested, but
there may also be cases where the performance of the device is an important indicator of
the existence or severity of a fault. We have found a number of issues related to faults
causing a spike in processor or memory utilization. It is reasonable to assume that these
events might impact the performance of the systems. Consider a high-end SIP soft
switch capable of 500 calls per second. It would certainly be interesting to know if a
particular mutation (or set of mutations) results in a 20% reduction in call processing
rates.

Although the Mu appliance does not have any capability to directly test the functionality or
performance of the target systems it has two features that allow any external test tool
having a remotely accessible API to be incorporated in a Mu test. These features use an
integrated console (either Telnet or SSH) to send commands to the target tool at strategic
points during the fault isolation process. The values returned by these commands may
be used as an alternate method for triggering fault isolation.

The integrated solution described in this document is intended to show how the Agilent
N2X can be integrated with the Mu to produce tests that are greater then either one could
accomplish in a standalone fashion. With that in mind the test scenario will be focused on
a fairly basic and specific integration, and more complex test scenarios will be discussed.
In the test environment below the Mu will control the Agilent N2X in order to monitor the
delivery of data services during testing and provide a more holistic view into the DUT's
reliability, availability, security, and performance characteristics.

Test Bed Configuration

In the network diagram shown in Figure 1 below shows a simplified lab network that
contains a core router connected to the Mu-4000 which will send protocol mutations, and
the Agilent N2X which will be a control plane neighbor with the M10 and will send data
packets through the router. There is also an Agilent N2X controller, which the Mu-4000
will control via a Telnet channel.

Intranet

N2X
Controller
Core Router g
Mu 4000
. Management
Switch
i
e - W e
L lr;i- W e _ﬁ;‘t‘&':
Agilent N2X

This scenario is merely one example; there are many others that could and should be
tested via this test lab topology. All critical services running on the Core router should be
tested in end-point mode, including BGP, OSPF, PIM, LDP/MPLS, management
interfaces such as SSH, Telnet, and SNMP, as well as any other end-point security,
routing, authentication, or management protocol. The M10 can also be analyzed in
passthrough mode, to see how the higher-layer protocol mutations affect forwarding and
inspection engines. The Agilent N2X also supports these protocols, and can measure the
effect of a Mu analysis on the performance and reliability of these key services.

A key feature of the Mu analyzer with respect to integrated testing is the ability to
communicate with other devices using an SSH or Telnet connection. In this case we will
establish a Telnet connection to a N2X Controller, in order to automate the running of an
N2X load test during a Mutation Analysis. Once connected the Mu starts the Tcl shell
and sources a file that contains all of the scripts needed for the integrated test. It then
runs a Tcl procedure to configure the desired test and instructs the N2X to bring the
control plane up and begin transmitting data packets.

Once the N2X begins transmitting, the Mu will begin sending mutation traffic from the
attack ports specified in the test configuration. At each point where the Mu “instruments”
to validate that the DUT is still functioning it instructs the N2X controller to run a Tcl
procedure which queries the status of the N2X load test. This script returns a message
that indicates either that the load test is operating within acceptable parameters or that it
has failed. It can also display the counters of the interfaces to be recorded for later use. If

no anomaly is detected, the Mu continues with the next set of mutated sequences. |If the
script instead indicates that the DUT is no longer capable of handling the offered load it
will trigger the Mu to enter “Fault Isolation”. This occurs whether or not the Mu’s own
fault identification mechanisms are triggered.

Figure 2 illustrates how the Mu-4000 will interact with the N2X controller, how the Mu and
the N2X will test the performance and robustness of the Core router, and how results will
be correlated to form a more complete picture of how the router will behave in the real
world when subjected to a variety of traffic conditions.

=

StartTest
StopTest
ConfigureTest
GetSampledPacketloss
GetAveragelatency

Ml

Tast Control Measunsmet ¢ »
R /R

Test Integration Example — Core router PIM analysis and data throughput

As an example of Mu/Agilent N2X integration, we will first consider the testing of a core

router, which will participate in the forwarding of data via Protocol Independent Multicast
(Sparse Mode). The N2X will act as the PIM Rendezvous Point (RP) on one side of the

M10, and the Designated Router on the other side, and will simulate traffic sources and

multicast members connecting through the Core router.

The Mu-4000 will send malformed/mutated PIM messages to the M10, and will look for
any interruptions in service. The Mu will also leverage integrated monitors to detect “hard
faults” such as process re-starts or system crashes.

The Agilent N2X will simultaneously send data through the M10 (PIM Joins/Leaves and
Multicast traffic), and will measure and log packet loss and latency statistics and measure
the overall performance of the router. OSPF will also be running between the M10 and
the N2X to establish a route table for connectivity.

Figure 3 represents the PIM analysis scenario:

; Designated Router Core Router Rendezvous Router

Multicast : ' : _) Traffic
Members : = ' — Sources
; PIM Joins/Leaves Multicast Traffic
PIM Protocol PIM
Mutations

Mu 4000

Agilent N2X Integration
The integrated Mu/Agilent N2X test is constructed from the four modules shown
below. Three of these (Test Bed, Target and Attacks) define the Mu test. The

remaining one (Monitors) control the Agilent N2X. An additional monitor will measure
CPU utilization of the M10 router during the analysis.

Analysis Overview
The Analysis Overview shows how the various configuration elements fit together

in order to make up a meaningful analysis. We will explore each configuration
element in detail below.

Analysis Overview
Analysis Name Mu and Agilent - PIM POC - FINAL for Ap

Configuration

Test Bed Attacks
Mu plus Agilent POC 3 ’
Al connects to core router 0/3/0 A2 connects to core router 0/3/1 B1 Mutation Attack (#1) = remove
connects to Agilent N2 controller . .
A2 (172.16.2.2) connected to Core Router Interface 0/3/1 (172.16.2.1) @LE* EogteerIM-FAULTS (Mutation Attack)
4 interfaces, 4 hosts total ? _;ug:EttD PIM variants that cause faults on the enterprise router
under test.
Target Protacol: proto/pim
Attack Version: 7929
Core Router (Server Options: 1
Target template for an core router with an RPD re-starter for automated
recovery and fault isolation. OS 8.4-20071201.0 built 2007-12-01
07:50:30 UTC
Al -> Core Router Interface 0/3/0

Monitors

Command Monitor (#1) % [emove

9, Start Client and Query Agilent for Packet Loss
fE_\’ {Command Monitor)

Channel: Telnet to Agilent Controller

Channel Commands: 4

Commands: 1

Actions

(None)

Test Bed

The Test Bed section defines the objects that the Mu can interact with and
determines what network settings the attack ports should have at run time.
Everything that the Mu needs to communicate with must be defined in the Test
Bed. The first step is to define the address that the Mu will source to
communicate to other network objects. In this test bed the interfaces A1, A2, B1,
and Management ports are used. All other Mu interfaces are set to “do not use”.

Al connects to the Core router under test via interface 0/3/0:

Mu plus Agilent POC
The networking environment that contains the Mu Service Analyzer and the target you want to
analyze.

Name Mu plus Agilent POC Ut

Description Al connects to core router 0/3/0
A2 connects to core router 0/3/1
Bl connects to Agilent N2 controller

A2 Bl B2 Management Port Auxiliary Port

| Use interface - Static IP _:1

IPv4 Address 172.16.1.2
IPv4 Netmask 24
IPv4 Address Range End
IPv6 Global Address
IPv6 Global Mask 64
i/ IPv6 Global Address Range
End

VLAN ID

T
Host (#1) 2 [EMOVE

Core Router Interface 0/3/0 (Host)
IPv4 Address: 172.16.1.1

10

A2 connects to the Core router under test via interface 0/3/1

Mu plus Agilent POC

The networking environment that contains the Mu Service Analyzer and the target you want to
analyze.

Name Mu plus Agilent POC Update Template

Description Al connects to core router 0/3/0
A2 connects to core router 0/3/1
Bl connects to Agilent N2 controller

Mu Service Analyzer Interfaces

Al | A2 | B1 | B2 | ManagementPort | Auxiliary Port

[Use interface - Static IP Lé'q

Interface Configuration

IPv4 Address 172.16.2.2

IPv4 Netmask 24
[il1Pv4 Address Range End

IPv6 Global Address

IPv6 Global Mask 64

[7] IPv6 Global Address Range
End
VLAN ID

Hosts

Connected Hosts
© Add Host

Host (#1) #remove

Core Router Interface 0/3/1 (Host)

IPv4 Address: 172.16.2.1

11

B1 connects to the Agilent N2X controller:

Mu plus Agilent POC

The networking environment that contains the Mu Service Analyzer and the target you want to
analyze.

Name Mu plus Agilent POC Update Template

Description Al connects to core router 0/3/0
AZ connects to core router 0/3/1
Bl connects to Agilent N2 controller

Mu Service Analyzer Interfaces

Al | A2 | B1 | B2 | Management Port | Auxiliary Port

[Use interface - Static IP l-#-‘

Interface Configuration
IPv4 Address 11.0.0.100
IPv4 Netmask 8
[il1Pv4 Address Range End
IPv6 Global Address
IPv6 Global Mask 64

[7] IPv6 Global Address Range
End

VLANID

Hosts

Connected Hosts
© Add Host

Host (#1) #remove

Agilent Controller {Host
IPv4 Address: 11.0.0.1

12

The Mu Management port is configured to talk with the Core router management

port:

analyze.

Name

Description

Mu Service Analyzer Interfaces

Use interface 9‘

Connected Hosts

Host (#1) 2/ remove

anag

Al | A2 | B1 | B2 | Ma

Mu plus Agilent POC

Al connects to core router 0/3/0
A2 connects to core router 0/3/1
Bl connects to Agilent N2 controller

ent Port Auxiliary Port

Core Router MGMT Interface {Host)

IPv4 Address: 10.10.7.25

Mu plus Agilent POC
The networking environment that contains the Mu Service Analyzer and the target you want to

Update Template

[verity | » |

© Add Host

13

Target

The Target section allows the user to select the “Host” to be tested from a list of
previously defined hosts. We simply have to select the target from the pull down
menu located on the Interface tab as shown below:

Core Router
The network object you want to analyze.

General Control Restarter

Target Input Host | Core Router Interface 0/3/0 (A1) _:]

The control for this target allows for the target to be restarted in the event that
target becomes unresponsive. In this case the restart action is a CLI command
that is entered via an SSH channel into the Core router under test.

Core Router
The network object you want to analyze.

General Interfaces Restarter

Target Control | Service _i]

55H Channel into the Core Router Management Interface

Channel Host: Core Router MGMT Interface
TCP Port: 22
t

Start Command * restart routing immediately
Stop Command * i
Command Timeout * 30 |'s _i]
Attack

The attack section defines the protocol that will be used to test the exception
handling capabilities of the DUT, and any parameters required to allow valid
protocol interaction with the DUT. The user may also choose to define one or
more protocols that will be used to instrument the DUT. “Instrumentation” is the
Mu'’s internal method for determining if the DUT remains in a functional state
following the reception of malformed packet sequences. A valid exchange is
directed at the DUT and its responses are evaluated. If the responses indicate
that the protocol is running the device is assumed to be operational and the next
set of mutations is sent; otherwise the Mu will enter fault isolation. By default the

14

protocol being tested is used for instrumentation, however, this behavior may be
over ridden or additional protocols may used as well.

For simplicity we will accept the default instrumentation and forgo a detailed
discussion of the options as the focus once again is the integration of the Mu with
the Agilent N2X. Below is a capture of the attack configuration options:

Analyzes a Target's ability to handle protocol mutations provided by Mu Dynamics.

%%» Router-PIM-FAULTS

o

General Selection Instrumentation Advanced
Timeout * 1000 Reset
Delay *0
IP Version * va ~|

DiffServ Code Point (DSCP) * 0

Multicast Group IP 224.0.0.13
Include Dense Mode = @
Messages

15

Monitors

The Monitors section is used to define interactions with devices outside the Mu
that are being used to determine the health of the DUT during the course of the
mutation test. Many times this is done through direct interaction with the DUT,
but for the purpose of this App Note we will use it to run the Agilent N2X Tcl
procedures to look for packet loss and latency issues on the DUT. The main

setup window for the Monitors section is shown below:

c:\ Start Client and Query Agilent for Packet Loss
—_— Executes terminating commands on the Target or external host. Mu Service Analyzer uses
command output to identify possible failures or faults occurring on the Target.

Commands Advanced

Name Start Client and Query Agilent for Packet

Description

Channel *
===p]. Telnet to Agilent Controller (Telnet)
:1.---%

Channel Host: Agilent Controller
TCP Port: 23

Prompt: C:.4+>|%

Commands: 4

change

Setting up the Mu to control the Agilent N2X is a three-step process. First we
must establish a Telnet session with the N2X controller. This is done through the
Channel specification.

We need to specify the Mu port we will use to establish the telnet channel, a
regular expression which will return true when the channel returns a prompt, the
TCP Port number used for telnet (which defaults to 23):

C:\ Start Client and Query Agilent for Packet Loss
— Executes terminating commands on the Target or external host. Mu Service Analyzer uses
command output to identify possible failures or faults occurring on the Target.

Command Monitor (#1) / Channel

Setup Advanced

Name Telnet to Agilent Controller

Description

Prompt Co+>|%

Channel Host [Agilent Controller (81) [
TCP Port * 23

16

In order to navigate the login process that occurs over telnet we must enter some

setup actions. We will look for the word “login:” then send the username “n2x”,
then wait for the response “password:” and then transmit the password for the
user n2x. At this point we should expect a “>" prompt to be considered
successful. The other prompt specified is “%” which becomes valid in the Tcl

shell.

LC o

Command Monitor (#2) / Channel

S Agilent TCL Shell

Executes terminating commands on the Target or external host. Mu Service Analyzer uses
command output to identify possible failures or faults occurring on the Target.

Gen

eral Advanced

] P
Expect (#1) g remove
Regex *

Timeout %

Send (#2) 2| remove

Command

| ’
Expect (#3) g remove
Regex "
Timeout *

Send Password (#4) £ remove

Password *

legin

4 (s 4
n2x

password:

4 s ?]

LTINS

o Add | Choose One a

2/Remove All

17

After the channel configuration is completed, the second step is to start the Tcl
shell, configure the test on the Agilent N2X and begin transmitting traffic. This is
done through the Setup tab that allows us to create an Expect script to interact
with the channel as shown below:

r(-:.,f Start Client and Query Agilent for Packet Loss
= Executes terminating commands on the Target or external host. Mu Service Analyzer uses
command output to identify possible failures or faults occurring on the Target.

General Commands

E'[Setup

-]
2/Remove A
Command #1 glremove

cd c\data\n2x\mudynamics

Command #2 #remove
tclsh@3

Command #3 2l remove

source N2x_Pim_Test.tc|

Command #4 2/remove
StartTest
Timeout * 60 (s
Error Behavior | Reconnect ?1

Command #1 changes directories to the location of the Agilent Tcl files.
Command #2 starts the Tcl shell

Command #3 sources our Tcl procedures so that they can be used
Command #4 configures and launches the Agilent N2X load test

Please see Appendix B for details on the above procedures. The full Tcl script
“N2x_Pim_Test.tcl” has been provided for your reference and as a starting point
for a “production” implementation.

18

The final step in configuring the Command Monitor is to define the command
which will be sent each time the Mu wishes to check the status of the DUT. This
is done through the Commands tab of the Monitors window that is shown below:

fE'\\# Start Client and Query Agilent for Packet Loss
_,°_J Executes terminating commands on the Target or external host. Mu Service Analyzer uses
command output to identify possible failures or faults occurring on the Target.

General Advanced

=l v
Fault Inspection (#1) = [EMAVE
Inspect Command * GetSampledPacketlLoss
Timeout * 4000

<)
Fault Inspect (#1) = [EMOve
Fault Pattern * Al1-9]+

Pattern Match Behavior | Log Fault _ﬂ

Inspect Command:
GetSampledPacketLoss

With the command GetSampledPacketLoss, a Tcl procedure is initiated that
will measure the number of packets lost during the PIM load test, between
successive requests. The allowed tolerance of packet loss is up to 9 packets,
and so the Fault Pattern is set to trigger whenever packet loss is 10 packets
or greater. This can of course be customized to any packet loss tolerance
level, and can be extended to include additional metrics beyond just packet
loss (i.e. latency)

Running the Test

After completing this configuration (or loading a saved configuration) the
integrated Mu/Agilent N2X test is run exactly like a standard Mu test. Click on
the Run tab and click the Run button as shown:

Mu and Agilent - PIM POC

Info Test Bed Target Attacks Monitors Actions

19

The screen shot below shows the Faults tab of a completed analysis:

Info | Engine Log | Response Time | Channel Output | Statistics Configuration

Faults

Sort by: Detection | Isolation | Confidence Level- | Time ‘o“,

 conf. Title Detection Isolation Attack Type Time Labels
B PIM Messag: Instrumentation Vector Mutation 12/15/08 5:27:33
2 Loop Attack PM
o 1 Messages-pimv2.r....rinner.message.hold Instrumentation Vector Mutation 12/15/08 5:34:13
Loop Attack PM
Report | Label Actions: | Choose One | Edit Labels...

Note that the attached Monitor traces show clear packet loss occurring whenever
a fault was identified:

17:27:25C.0 GetSampledPacketLoss

0

17:27:30C.0 GetSampledPacketLoss
0

17:27:35C.0 GetSampledPacketLoss
51962.0

17:34:05C.0 GetSampledPacketLoss

0

17:34:10C.0 GetSampledPacketLoss
0

17:34:15C.0 GetSampledPacketLoss
5948.0

This result demonstrates the power of the integration, as each test tool offers a
unigue perspective and metric that by itself only tells part of the story. When the
combined date is woven together, however, we now have a clear indication of the
real-world impact (significant packet loss) of the faults identified by the Mu
Service Analyzer.

Appendix A — Mu Analysis Template
The following is the Mu Analysis Template used for this integrated test as an xml file.

It can be imported into any Mu using the Templates->Import option. After you save the
template it will appear as an Analysis Template with the name “Residential Gateway”

<?xml version="1.0" encoding="UTF-8"?>
<mu_config version="3.0">
<templates>
<analysis name="Mu and Agilent - PIM POC - FINAL for AppNote" uuid="f8a7654c-
51ce-43b9-94de-eac35512d412">
<description>This is a modified POC that sources the tcl script on the
Agilent controller, and then executes individual functions to query metrics from the
Agilent to look for data loss or other events, and will correlate those with the Mu test
cases.</description>
<analysis_status>NEW</analysis_status>
<analyzer_mode>Client</analyzer_mode>
<attacks>
<mutation_attack name="Router-PIM-FAULTS">
<description>Subset of PIM variants that cause faults on the
enterprise router under test.</description>
<analyzer_mode>Client</analyzer_mode>
<additional_instrumentation/>

<additional_instrumentation_isolation_enabled>true</additional_instrumentation_isolation_
enabled>
<address_looping_enabled>false</address_looping_enabled>
<excludes/>
<includes/>
<options>
<option>
<name>io.timeout</name>
<value>1000</value>
</option>
</options>
<protocol>proto/pim</protocol>
<variant_run_limit>
<variant_count>25</variant_count>
</variant_run_limit>
<start_from_variant>l</start_from_variant>
<suite_instrumentation_enabled>true</suite_instrumentation_enabled>
<throttle_timeout>0</throttle_timeout>
<variant_fault_limit>LIMIT_1</variant_fault_limit>
<version>7929</version>
</mutation_attack>
</attacks>
<event_actions/>
<monitors>
<command_monitor name="Start Client and Query Agilent for Packet Loss">
<telnet_channel name="Telnet to Agilent Controller'>
<capture>true</capture>
<commands>
<expect_command>
<regex>login:</regex>
<timeout>4000</timeout>
</expect_command>
<send_command>
<command>n2x</command>
</send_command>
<expect_command>
<regex>password:</regex>
<timeout>4000</timeout>
</expect_command>
<password_command>
<password>n2x12345</password>
</password_command>

21

</commands>
<prompt>C: .+> |%</prompt>
<host ref="Agilent Controller"/>
<tcp_port>23</tcp_port>
</telnet_channel>
<commands>
<command>
<fault_inspects>
<fault_inspect>
<fault_pattern>"[1-9]+</fault_pattern>

<pattern_match_behavior>Log_fault</pattern_match_behavior>
</fault_inspect>
</fault_inspects>
<send>GetSampledPacketLoss</send>
<timeout>4000</timeout>
</command>
</commands>
<error_behavior>reconnect</error_behavior>
<setup>
<commands>
<command>cd c:\data\n2x\mudynamics</command>
<command>tclsh83</command>
<command>source N2x_Pim_Test.tcl</command>
<command>StartTest</command>
</commands>
<timeout>60000</timeout>
</setup>
</command_monitor>
</monitors>
<server_target name="Core Router'>
<description>Target template for an core router with an RPD re-starter
for automated recovery and fault isolation.

0S 8.4-20071201.0 built 2007-12-01 07:50:30 UTC</description>
<analyzer_mode>Client</analyzer_mode>
<max_boot_time>180000</max_boot_time>
<min_boot_time>120000</min_boot_time>
<restart_delay>2000</restart_delay>
<restart_fail_behavior>Pause_analysis</restart_fail_behavior>
<service_target_control>
<process_restarter>
<ssh_channel name="SSH to Core Router'>
<description>SSH Channel into the Core Router Management
Interface.</description>
<capture>true</capture>
<commands>
<expect_command>
<regex>root@%</regex>
<timeout>4000</timeout>
</expect_command>
<send_command>
<command>cl i</command>
</send_command>
</commands>
<prompt>root></prompt>
<host ref="Core Router MGMT Interface"/>
<password>happyl</password>
<tcp_port>22</tcp_port>
<username>root</username>
</ssh_channel>
<command_timeout>30000</command_timeout>
<start>restart routing immediately</start>
<stop>cli</stop>
</process_restarter>
</service_target_control>
<target_in ref="Core Router Interface 0/3/0"/>
</server_target>
<testbed name="Mu plus Agilent POC">
<description>Al connects to core router 0/3/0
A2 connects to core router 0/3/1

22

Bl connects to Agilent N2 controller</description>
<mu_ifs>
<attack_if>
<hosts>
<host>
<name>Core Router Interface 0/3/0</name>
<v4_addr>172.16.1.1</v4_addr>
</host>
</hosts>
<port>al</port>
<v4_addr>172.16.1.2</v4_addr>
<v4_mask>24</v4_mask>
<v6_global_mask>64</v6_global_mask>
</attack_if>
<attack_if>

<hosts>
<host>
<name>Core Router Interface 0/3/1</name>
<v4_addr>172.16.2.1</v4_addr>
</host>
</hosts>
<port>a2</port>

<v4_addr>172.16.2.2</v4_addr>
<v4_mask>24</v4_mask>
<v6_global_mask>64</v6_global_mask>
</attack_if>
<mgmt_if>
<hosts>
<host>
<name>Core Router MGMT Interface</name>
<v4_addr>10.10.7.25</v4_addr>
</host>
</hosts>
<port>mgmt</port>
</mgmt_if>
<attack_if>
<hosts>
<host>
<name>Agi lent Controller</name>
<v4_addr>11.0.0.1</v4_addr>
</host>
</hosts>
<port>bl</port>
<v4_addr>11.0.0.100</v4_addr>
<v4_mask>8</v4_mask>
<v6_global_mask>64</v6_global_mask>
</attack_if>
</mu_ifs>
</testbed>
</analysis>
</templates>
</mu_config>

23

Appendix B — Tcl script procedures for Agilent N2X

Author: Peter Atanasovski
Created: 26 Nov 2008
Last modified: 26 Feb 2009

Copyright (C) 2008-2009 Agilent Technologies

All copies of this program, whether in whole or in part, and whether
modified or not, must display this and all other embedded copyright
and ownership notices in full.

Description :

Agilent N2X Tcl program to:

- configure PIM test scenario

- start/stop traffic

- retrieve/monitor N2X measurements

Preconditions :
- install Agilent N2X Tcl library AgtRt900 (version 4.0.26 or newer)

Usage :
$ tclsh83
% source N2x_Pim_Test.tcl
% StartTest
% GetSampledPacketLoss

% StopTest

HHFEHEFEHHFEHFF TR

path update for AgtRt900 installation
lappend auto_path "~/Agilent/N2X/tcl/extras"
lappend auto_path "C:/Program Files/Agilent/N2X/tcl/extras"

source Tcl packages
package require AgtRt900

Hm e ——————————————————————————————_———

Parameters

H e e -

array set gScriptData \

[list \

firstMcastGroup '"225.0.0.1" \
instPacketLossThreshold 5\
n2xServerName localhost \
n2xSessionHandle 0\
n2xSessionLabel "“N2x_Pim_Test" \
n2xVersion latest \
numMcastGroups 5\
numTxSourcelp 1\
pimSinkHandle 0\
pimSourceHandle 0\
pimSourceMemberList N\
pimSinkMemberList O\
portStatsHandle 0\
samplinglnterval 1\
sinkPrefixLength 24 \
sourcePrefixLength 24 \
sutName ""Core-Router™ \
sutRouterld "172.16.1.1" \
sutSourcelp "172.16.4.1" \

24

sutSourcePort "fe/3/0" \

sutSinklp "172.16.3.1" \
sutSinkPort "fe/2/0" \
testDuration 60 \
testLoad 100 \
testLoadUnits PERCENTAGE_L INK_BANDWIDTH \
testMode AGT_TEST_CONTINUOUS \
tstSourcelp "172.16.4.2" \
tstSourcePort 10171 \
tstSourcePortHandle 0\
tstSourcePortPersonal ity AGT_PERSONALITY_TRI_RATE_ETHERNET_X \
tstSinklp "172.16.3.2" \
tstSinkPort 10172 \
tstSinkPortHandle 0\
tstSinkPortPersonality AGT_PERSONALITY_TRI_RATE_ETHERNET_X \
txSourcelp "30.1.2.1" \
txSourcelpModifier 1\
]
N2X stats storage
- each of the form [list portNamel intervall valuel portName2 interval2 value2 ...]
array set gPortPreviousStatsData \
[list \
AGT_TEST_PACKETS_TRANSMITTED N
AGT_TEST_PACKETS_RECEIVED N
AGT_TEST_TRANSMIT_THROUGHPUT O\
AGT_TEST_RECEIVE_THROUGHPUT ON
AGT_PACKET_AVERAGE_LATENCY N
AGT_PACKET_MAXIMUM_LATENCY O\
AGT_MISDIRECTED_PACKETS_RECEIVED O\
]
Hm
Procedures
H e
H e
AddPorts { }
Hm
Parameters:
none
#
Returns:
nothing
#
Purpose:
Add test ports to an N2X test session.
2 N N A N A A N A A e A A e e N e e e

proc AddPorts { } {
variable gScriptData

set procName [AgtTsuProcedureName]

AgtTsuTraceMessage "'$procName: Adding test ports..."
set hTestPortList [::AgtRt900::AddPorts \
-testportnamelist [list $gScriptData(tstSourcePort)
$gScriptData(tstSinkPort)] \
-sutportnamelist [list $gScriptData(sutSourcePort)
$gScriptData(sutSinkPort)] \
-testeripv4list [list $gScriptData(tstSourcelp)
$gScriptData(tstSinkip)] \
-sutipv4list [list $gScriptData(sutSourcelp)
$gScriptData(sutSinkip)] \
-prefixlengthlist [list $gScriptData(sourcePrefixLength)
$gScriptData(sinkPrefixLength)] \
-personalitylist [list $gScriptData(tstSourcePortPersonality)
$gScriptData(tstSinkPortPersonality)] \
-sutnamelist [list $gScriptData(sutName) $gScriptData(sutName)]]

get port handles if specified ports already added
if { '[1length $hTestPortList] } {

25

set hTestPortList [AgtTsuConvertPortNameToHandle [list
$gScriptData(tstSourcePort) $gScriptData(tstSinkPort)]]
b

set gScriptData(tstSourcePortHandle) [lindex $hTestPortList 0]
set gScriptData(tstSinkPortHandle) [lindex $hTestPortList 1]

Returns:
nothing

Purpose:

Clear measurement data storage.
proc ClearMeasurementData { } {
variable gScriptData
variable gPortPreviousStatsData

set procName [AgtTsuProcedureName]

set testPortList [list $gScriptData(tstSourcePort) $gScriptData(tstSinkPort)]
foreach statsName [array names gPortPreviousStatsData *] {
set valuelList {}
foreach portName $testPortList {
lappend valuelList $portName O O

set gPortPreviousStatsData($statsName) $valuelist

(o]

CloseSession { }
Parameters:
none

Returns:
nothing

Purpose:

Close the N2X test session.
proc CloseSession { } {
variable gScriptData

HHHFHHHEHEHEHEHEHH

AgtTsuDisconnect
AgtTsuCloseSession $gScriptData(n2xSessionHandle)
3
e ———————
ConfigureLinkLayer { }
- g My My SR
Parameters:
none
#
Returns:
nothing
#
Purpose:
Configure the link layer on the test ports.
- g M Sy S

proc ConfigureLinkLayer { } {
variable gScriptData

set procName [AgtTsuProcedureName]

26

set hTestPortList [list $gScriptData(tstSourcePortHandle)
$gScriptData(tstSinkPortHandle)]

set tstlpList [list $gScriptData(tstSourcelp) $gScriptData(tstSinkip)]

set sutlpList [list $gScriptData(sutSourcelp) $gScriptData(sutSinkip)]

set prefixLengthList [1ist $gScriptData(sourcePrefixLength)
$gScriptData(sinkPrefixLength)]

foreach hPort $hTestPortList tstlp $tstlpList sutlp $sutlpList prefixLength
$prefixLengthList {

Ethernet interface
if { [AgtTsulsEthernetPort $hPort] } {
::AgtRt900: :Ethernet: : Initialiselnterface \
-porthandle $hPort \
-enablearp true \
-mediatype RJ45

reconfigure Tester and SUT IPv4 addresses (i-e. when connecting to existing

session)
AgtTsuSetSutAndTesterIpAddress $hPort $sutlp $tstlp $prefixLength
send ARP requests
2 :AgtRt900: :Ethernet: :ResolveAddressesUsingArp -porthandle $hPort
b
AgtTsuTraceMessage "$procName: Test port link layer configured."
}
e
ConfigureMeasurements { }
e
Parameters:
none
#
Returns:
nothing
#
Purpose:
Configure measurements.
2 N N A A A s e A e e e N e e

proc ConfigureMeasurements { } {
variable gScriptData
variable gPortPreviousStatsData

set procName [AgtTsuProcedureName]

store information for monitoring port stats

set hTestPortList [list $gScriptData(tstSourcePortHandle)
$gScriptData(tstSinkPortHandle)]

1 AgtRt900: : Stats: :AddPortStatisticsRecord -porthandlelist $hTestPortList

select stats for ports
set statsList [array names gPortPreviousStatsData *]
1 AgtRt900: :Stats: :SetDefaul tPortStatistics -statisticslist $statslList

configure stats collection
1 :AgtRt900: : Stats: :ProcessStatisticsRecordsAndSelect -typelist [list PORT]

store stats handle
set gScriptData(portStatsHandle) [lindex $::AgtRt900:: libData(portStatsHandleList) 0]

configure N2X stats log file

:AgtRt900: :ApiTsulnvoke AgtStatisticsLog SetLogFile
""$gScriptbata(n2xSessionLabel).csv"

::AgtRt900: :ApiTsulnvoke AgtStatisticslLog SelectPorts $hTestPortList

S :AgtRt900: :ApiTsulnvoke AgtStatisticsLog SelectStatistics $statsList

:AgtRt900: :ApiTsulnvoke AgtStatisticsLog EnablelLogging

AgtTsuTraceMessage "$procName: Measurement system configured."

27

ConfigureOspf { }
Parameters:
none

Returns:
nothing

Purpose:

Configure OSPF.
proc ConfigureOspf { } {
variable gScriptData

HHFEHEHEHEHEHFHHHR

set procName [AgtTsuProcedureName]

OSPF session

set hOspf [::AgtRt900: :Ospf::AddSession \
—-interfacehandle $gScriptData(tstSourcePortHandle) \
-testeripv4 $gScriptData(tstSourcelp) \
-sutipv4 $gScriptData(sutSourcelp) \
-prefixlength $gScriptData(sourcePrefixLength) \
-sutrouterid $gScriptData(sutRouterld)]

OSPF router

2 :AgtRt900: :Ospf: :AddRouters \
-portnamelist $gScriptData(tstSourcePort) \
-numrouters 1 \
-startrouterid $gScriptData(txSourcelp)

AgtTsuTraceMessage "$procName: OSPF emulation configured - session $hOspf on port
$gScriptData(tstSourcePort)."
3

ConfigurePim { }
Parameters:
none

Returns:
nothing

Purpose:

Configure PIM.
proc ConfigurePim { } {
variable gScriptData

HHHFHHEHEHEHEHHHH®

set procName [AgtTsuProcedureName]

add multicast groups

set hMcastGroupList {}

for {set i 0} {$i < $gScriptbData(numMcastGroups)} {incr i} {

lappend hMcastGroupList [::AgtRt900: :Pim: :AddMulticastGroupPool \
-numaddresses 1 \
-firstip [AgtTsuGetNextlpRoute
$gScriptData(firstMcastGroup) 32 $i] \

-name "MulticastGroup_$i']

b

add source address pools

set hSourcePool [::AgtRt900::Pim::AddSourceAddressPool \
-numaddresses $gScriptData(numTxSourcelp) \
-Firstip $gScriptData(txSourcelp) \
-prefixlength 32 \
-name "'SourcePool_1" \
-modifier $gScriptData(txSourcelpModifier)]

set hSourcePoolList {}

28

for {set i 0} {$i < $gScriptbData(numMcastGroups)} {incr i} {
lappend hSourcePoolList $hSourcePool

configure PIM on source port
set gScriptData(pimSourceHandle) [::AgtRt900::Pim::AddSession \
—-interfacehandle $gScriptData(tstSourcePortHandle) \
-testerip
""$gScriptData(tstSourcelp)/$gScriptData(sourcePrefixLength)™ \
-enable true]

set sessionlnfo [::AgtRt900::Pim::ConfigureSession \
-sessionhandle $gScriptData(pimSourceHandle) \
-addpoollist $hMcastGroupList \
-addsourcepool list $hSourcePoolList \
-membershipmode RECEIVE \
-rpentitytype C_RP \
-rpentityaddress $gScriptData(tstSourcelp) \
-enable true]

set hMemberPoolList [lindex $sessioninfo 1]

configure PIM on sink port
set gScriptData(pimSinkHandle) [::AgtRt900::Pim::AddSession \
-interfacehandle $gScriptData(tstSinkPortHandle) \
—-testerip "$gScriptData(tstSinklp)/$gScriptData(sinkPrefixLength)™ \
-remoterpaddress $gScriptData(tstSourcelp) \
-enable true]

:AgtRt900: :Pim: :ConfigureSession \
-sessionhandle $gScriptData(pimSinkHandle) \
-addpool list $hMcastGroupList \
-addsourcepool list $hSourcePoolList \
-remoterpaddress $gScriptData(tstSourcelp) \
-enable true

AgtTsuTraceMessage "$procName: PIM emulation configured - source session
$gScriptbata(pimSourceHandle) on port $gScriptData(tstSourcePort); sink session
$gScriptData(pimSinkHandle) on port $gScriptData(tstSinkPort)"
¥

ConfigureTest { }
Parameters:
none

Returns:
nothing

Purpose:

Configure the test scenario.
proc ConfigureTest { } {
variable gScriptData

HHHFHHHEHEHEHEHEHH

ConnectToSession

AddPorts

ConfigurelLinkLayer
RemoveExistingConfiguration
ConfigurePim

ConfigureOspf

StartRouting
ConfigureTraffic
ConfigureMeasurements

set hTestPortList [list $gScriptData(tstSourcePortHandle)
$gScriptData(tstSinkPortHandle)]
JoinAllGroups $hTestPortList

29

ConfigureTraffic { }

Parameters:
none

Returns:
nothing

Purpose:
Configure traffic.

HHEHEHHEHRHFHH R

proc ConfigureTraffic { } {
variable gScriptData

set procName [AgtTsuProcedureName]

add traffic profile

set hProfile [lindex [::AgtRt900::Traffic::AddProfile \
-sourceporthandle $gScriptData(tstSourcePortHandle) \
-load $gScriptData(testLoad) \
-loadunits $gScriptData(testLoadUnits)] 1]

set hStreamGrouplList {}

for {set i1 0} {$i < $gScriptData(numMcastGroups)} {incr i} {

add stream group for each multicast group
set sginfo [::AgtRt900::Traffic::AddStreamGroup \
-profilehandle $hProfile \
-packetlengthrecord [list FIXED AGT_PACKET_LENGTH_MODE_IP_PACKETS
64 64 1] \
-expdestportlist $gScriptData(tstSinkPort)]
set hSg [lindex $sginfo 0]
set hPdu [lindex $sginfo 1]
lappend hStreamGroupList $hSg

configure PDU
set srclpData [list ipv4 source_address [list FIXED $gScriptData(txSourcelp)]]
set dstlpData [list ipv4 destination_address [list FIXED [AgtTsuGetNextlpRoute
$gScriptData(firstMcastGroup) 32 $i]ll
set fieldDataList [list $srclpData $dstlpData]
::AgtRt900: :Traffic: :ModifyPdu \
-sourceporthandle $gScriptData(tstSourcePortHandle) \
-streamgrouphandle $hSg \
-pduhandle $hPdu \
-fielddatalist $fieldDatalList
3

AgtTsuTraceMessage "$procName: Traffic configured.”

W]

ConnectToSession { }
Parameters:
none

Returns:
nothing

Purpose:

Create/connect to an N2X test session.
proc ConnectToSession { } {
variable gScriptbData

HHEHEHHFHR R

set procName [AgtTsuProcedureName]

set n2xInfo [AgtTsuConnectToSessionByName \
-createlfNeeded \
-sessionVersion $gScriptData(n2xVersion) \
-sessionLabel $gScriptData(n2xSessionLabel) \
-serverName $gScriptData(n2xServerName)]

30

set gScriptData(n2xSessionHandle) [lindex $n2xInfo 0]

AgtTsuTraceMessage "$procName: Connected to N2X test session
"$gScriptData(n2xSessionLabel)” (handle = $gScriptData(n2xSessionHandle)) on server
$gScriptData(n2xSessionLabel)™
b

Returns:
rxAvgLatency - average latency

Purpose:

Get the cumulative average latency.
proc GetAveragelLatency { } {
variable gScriptData

set procName [AgtTsuProcedureName]

get statistics data

set statsDataRcd [AgtTsulnvoke AgtStatistics GetStatistics
$gScriptData(portStatsHandle)]

set interval [Iindex $statsDataRcd O]

set statsRequestRcd [list [list $gScriptData(tstSinkPort)
AGT_PACKET_AVERAGE_LATENCY]]

get measurement value
set requestedDataRcd [GetPortStatisticsValue $statsDataRcd $statsRequestRcd]
set rxAvglLatency [lindex [lindex $requestedDataRcd 0] 1]

#return [list $interval $rxAvglLatency]
return $rxAvglLatency

Returns:
packetLoss - packet loss

Purpose:

Get the cumulative packet loss.
proc GetPacketlLoss { } {
variable gScriptData

set procName [AgtTsuProcedureName]

get statistics data
set statsDataRcd [AgtTsulnvoke AgtStatistics GetStatistics
$gScriptData(portStatsHandle)]
set interval [lindex $statsDataRcd O]
set statsRequestRcd [list [list $gScriptData(tstSourcePort)
AGT_TEST_PACKETS_TRANSMITTED] \
[list $gScriptData(tstSinkPort) AGT_TEST_PACKETS_RECEIVED]]

get measurement value

set requestedDataRcd [GetPortStatisticsValue $statsDataRcd $statsRequestRcd]
set txStatvValue [lindex [lindex $requestedDataRcd 0] 1]

set rxStatValue [lindex [lindex $requestedDataRcd 1] 1]

set packetlLoss [expr $txStatValue - $rxStatValue]

1f packet loss is within certain boundary (i.e. to account for packets in transit),

31

then report O
it { $packetLoss < $gScriptData(instPacketlLossThreshold) } {
set packetLoss 0
3

#return [list $interval $packetlLoss]
return $packetLoss

Returns:
rxMaxLatency - maximum latency

Purpose:

Get the cumulative maximum latency.
proc GetMaximumLatency { } {
variable gScriptData

set procName [AgtTsuProcedureName]

get statistics data

set statsDataRcd [AgtTsulnvoke AgtStatistics GetStatistics
$gScriptData(portStatsHandle)]

set interval [lindex $statsDataRcd 0]

set statsRequestRcd [list [list $gScriptData(tstSinkPort)
AGT_PACKET_MAXIMUM_LATENCY]]

get measurement value
set requestedDataRcd [GetPortStatisticsValue $statsDataRcd $statsRequestRcd]
set rxMaxLatency [lindex [lindex $requestedDataRcd 0] 1]

#return [list $interval $rxMaxLatency]
return $rxMaxLatency

Parameters:
statsDataRcd - stats data record as returned by "AgtStatistics GetStatistics”
statsRequestRcd - request record containing statistics of interest of the form:
[list {port_namel stat_namel} {port_namel stat name2} ...]

requestedDataRcd - requested data of the form:
[list {port_namel stat_valuel} {port_namel stat value2} ...]

Purpose:
Retrieve the requested port statistics values.

#

#

#

#

#

#

Returns:
#

#

#

#

#

e ———————
proc GetPortStatisticsValue { statsDataRcd statsRequestRcd } {

variable gScriptData

set procName [AgtTsuProcedureName]

Get statistics

- returns an ordered list of values { portl_statl portl_stat2 ... portl_statN
port2_statl port2_stat2 ...}

- Note, these are accumulated values

set interval [lindex $statsDataRcd 0]

set resultsinfo [lindex $statsDataRcd 1]

set requestedDataRcd {}
foreach statsConfig $statsRequestRcd {

32

set portName [lindex $statsConfig 0]
set statsName [lindex $statsConfig 1]
set hPort [AgtTsuConvertPortNameToHandle $portName]

get port index from selection
set hSelectedPortList [AgtTsulnvoke AgtStatistics ListSelectedPorts
$gScriptData(portStatsHandle)]
set portindex [Isearch -exact $hSelectedPortList $hPort]
if { $portindex == -1 } {
AgtTsuShowMessage FATAL "'$procName: Port $portName has not been configured
for statistics collection, aborting..."

}

get statistics index from selection
set selectedStatList [AgtTsulnvoke AgtStatistics ListSelectedStatistics
$gScriptData(portStatsHandle)]

set statlndex [Isearch -exact $selectedStatList $statsName]
set numStats [1length $selectedStatList]
if { $statindex == -1 } {

AgtTsuShowMessage FATAL "$procName: Measurement $statsName has not been
selected for statistics collection, aborting..."

}

get stats for specified port
set valuelndex [expr ($portindex * $numStats) + $statlndex]
set statsValue [lindex $resultsinfo $valuelndex]

store requested stats data
lappend requestedDataRcd [list $portName $statsValue]

¥
return $requestedDataRcd
3
e e
GetSampledPacketLoss { }
H e e -
Parameters:
none
#
Returns:
packetLoss - packet loss
#
Purpose:
Get the sampled packet loss - number of packets lost between this
request and the previous request.
Hm e ————————————————————————————————_——

proc GetSampledPacketLoss { } {
variable gScriptData
variable gPortPreviousStatsData

set procName [AgtTsuProcedureName]

get previous values

set prevTxValuelList $gPortPreviousStatsData(AGT_TEST_PACKETS_TRANSMITTED)

set portindex [Isearch -exact $prevTxValueList $gScriptData(tstSourcePort)]
set prevTxStatValue [lindex $prevTxValueList [expr $portindex + 2]]

set prevRxValuelList $gPortPreviousStatsData(AGT_TEST_PACKETS_RECEIVED)

set portindex [Isearch -exact $prevRxValueList $gScriptData(tstSinkPort)]
set prevRxStatValue [lindex $prevRxValueList [expr $portindex + 2]]

set previnterval [1index $prevRxValueList [expr $portindex + 1]]

get current values

set statsDataRcd [AgtTsulnvoke AgtStatistics GetStatistics
$gScriptData(portStatsHandle)]
set currinterval [lindex $statsDataRcd 0]

set statsRequestRcd [list [list $gScriptData(tstSourcePort)
AGT_TEST_PACKETS_TRANSMITTED] \
[list $gScriptData(tstSinkPort) AGT_TEST_PACKETS_RECEIVED]]

33

check if we have a new sample set
if { $previnterval == $currinterval } {
- :AgtRt900: : ShowMessage -msgtype WARNING -popup O \
-msg “'$procName: Current measurement sample $currinterval is not new,

ignoring..."
return O
3
set requestedDataRcd [GetPortStatisticsValue $statsDataRcd $statsRequestRcd]
set currTxStatValue [lindex [lindex $requestedDataRcd 0] 1]
set currRxStatValue [lindex [lindex $requestedDataRcd 1] 1]
calculate values between last two requests
set txStatValue [expr $currTxStatValue - $prevTxStatValue]
set rxStatValue [expr $currRxStatValue - $prevRxStatValue]

get packet loss for sample
set packetLoss [expr $txStatValue - $rxStatValue]

1f packet loss is within certain boundary (i.e. packets in transit), then report O
it { $packetLoss < $gScriptData(instPacketlLossThreshold) } {

set packetLoss 0
}

store new values

UpdateMeasurementData AGT_TEST_PACKETS_TRANSMITTED $gScriptData(tstSourcePort)
$currinterval $currTxStatValue

UpdateMeasurementData AGT_TEST PACKETS_ RECEIVED $gScriptData(tstSinkPort)
$currinterval $currRxStatValue

get sample period
set samplePeriod [expr $gScriptData(samplinglnterval) * [expr $currinterval -
$previnterval]]

#return [list $samplePeriod $packetLoss]
return $packetLoss

Parameters:
hPortList - list of test port handles

Returns:
nothing

Purpose:
Join all multicast groups.

proc JoinAllGroups { hPortList } {

:tAgtRt900: :Pim: :JoinAl IMulticastGroups -porthandlelist $hPortList

W]

Parameters:
hPortList - list of test port handles

Returns:
nothing

Purpose:
Leave all multicast groups.

proc LeaveAllGroups { hPortList } {

HHHFHHEHEHEHEHEHEHH®

::AgtRt900: :Pim: :LeaveAl IMulticastGroups -porthandlelist $hPortList

Returns:
nothing

Purpose:

Remove existing routing/traffic configuration.
proc RemoveExistingConfiguration { } {
variable gScriptData

set procName [AgtTsuProcedureName]

set hTestPortList [list $gScriptData(tstSourcePortHandle)
$gScriptData(tstSinkPortHandle)]

AgtTsuRemoveAl 10spfSessions $hTestPortList
AgtTsuRemoveAlIPimSessions $hTestPortList
AgtTsuRemoveAl IMul ticastGroupPools
:AgtRt900: :Pim: :RemoveAl I1SourceAddressPools
AgtTsuRemoveAllTraffic

AgtTsuTraceMessage "'$procName: Existing configuration removed."

Returns:
nothing

Purpose:

Start routing and wait for control plane to come up.
proc StartRouting { } {
variable gScriptData

set procName [AgtTsuProcedureName]

set testPortList [list $gScriptData(tstSourcePort) $gScriptData(tstSinkPort)]
set rcdList [::AgtRt900::StartRoutingServices \

-portnamelist $testPortList \

-protocollist [list OSPF PIM] \

-maxwaittime 5]
1 AgtRt900: :Private: :ProcessStartRoutingServicesResult -recordlist $rcdlList

W]

StartTest { }
Parameters:
none

Returns:
nothing

Purpose:

Start a test.
proc StartTest { } {
variable gScriptbData

HHHFHHEHEHEHEHEEHH®

set procName [AgtTsuProcedureName]

ignore if test is already running
if { [::AgtRt900: :ApiTsulnvoke AgtTestController GetTestState] != "AGT_TEST_STOPPED"

H{
return
3
clear stats data storage
ClearMeasurementData
start test
:AgtRt900: :StartTest \
-testmode $gScriptData(testMode) \
-samplinginterval $gScriptData(samplinglnterval) \
-testduration $gScriptData(testDuration)}
H
StopTest { }
Hm e -
Parameters:
none
#
Returns:
nothing
#
Purpose:
Stop a test.
Hm

proc StopTest { } {
variable gScriptData

set procName [AgtTsuProcedureName]

stop test
ZAgtRt900: :StopTest
3
Hm e ——————————————————————————————_——
UpdateMeasurementData { statsName portName interval statsValue }
H e e -
Parameters:
statsName - statistics name as returned by EAgtStatistics
portName - test port name
interval - sample interval
statsValue - statistics value
#
Returns:
nothing
#
Purpose:
Update measurement data storage.
H e -

proc UpdateMeasurementData { statsName portName interval statsValue } {
variable gScriptData
variable gPortPreviousStatsData

set procName [AgtTsuProcedureName]
set testPortList [list $gScriptData(tstSourcePort) $gScriptData(tstSinkPort)]
set valuelList {}
foreach portName $testPortList {
lappend valuelList $portName $interval $statsValue

set gPortPreviousStatsData($statsName) $valuelList

36

set script debug level

0 - OFF
1 - Low
2 - Medium
3 - High

AgtTsuDebugLevel 0

enable APl and statistics logging
I AgtRt900: :EnableApiLogging -directory [file dirname [info script]]
1 AgtRt900: :Stats: :EnableStatisticslLogging -directory [file dirname [info script]]

Configure test scenario
ConfigureTest

AgtTsuTraceMessage '"\nNumber of System APl errors - [AgtRt900::GetApiErrorCount]"
AgtTsuTraceMessage "Number of Test Run errors - [AgtRt900::GetErrorCount]"
AgtTsuTraceMessage ‘"\nConfiguration Done!"*

37

Appendix C — Mu-4000 Features and Benefits

This section will summarize the features and benefits of the Mu Service Analyzer that will
be leveraged to provide maximum integration value to the customer.

Some of the primary benefits of the Mu Service Analyzer include:

= Millions of variations on service traffic — a unique, stateful protocol modeling
engine interactively explores the target attack surface with millions of dynamically
generated non-conformant variations of protocol traffic tailored to the targets’ exact
capabilities.

= Automation — automates the negative/robustness testing process, including device
monitoring and recovery, fault detection and isolation, and post-fault data collection
and reporting. Can be fully integrated into any test automation harness via a
scriptable Automation API.

= Fault Isolation — automatically pinpoints the test case or traffic scenario responsible
for a fault condition, and correlates and captures the data needed to take remediation
action.

= Service Monitoring — profiles how the various negative test cases impact the
availability and responsiveness of the services under test, or any other service
running on the device. Automatically records response-time degradations and
service-affecting latency spikes that could cause serious issues in the production
network.

= System Monitoring — monitors the device under test via CLI, SNMP, Syslog
Console, Telnet, or SSH, to detect subtle fault conditions such as CPU spikes or
memory leaks that may impact service quality or robustness.

= Reporting — The Mu-4000 generates actionable business reports along with the
technical details needed to take remediation action to minimize any identified
weaknesses.

38

	Executive Summary
	Appendix A – Mu Analysis Template
	Appendix B – Tcl script procedures for Agilent N2X
	Appendix C – Mu-4000 Features and Benefits

